Automated detection of uninformative frames in pulmonary optical endomicroscopy (OEM)

نویسندگان

  • Antonios Perperidis
  • Ahsan Akram
  • Paul McCool
  • Jody Westerfeld
  • David Wilson
چکیده

Significance: Optical endomicroscopy (OEM) is a novel real-time imaging technology that provides endoscopic images at a microscopic level. The nature of OEM data, as acquired in clinical use, gives rise to the presence of uninformative frames (i.e. pure-noise and motion-artefacts). Uninformative frames can comprise a considerable proportion (up to >25%) of a dataset, increasing the resources required for analysing the data (both manually and automatically), as well as diluting the results of any automated quantification analysis. Objective: There is therefore a need to automatically detect and remove as many of these uninformative frames as possible while keeping frames with structural information intact. Methods: This paper employs Gray Level Co-occurrence Matrix texture measures and detection theory to identify and remove such frames. The detection of pure-noise frames and motion artefacts is treated as two independent problems. Results: Pulmonary OEM frame sequences of the distal lung are employed for the development and assessment of the approach. The proposed approach identifies and removes uninformative frames with a sensitivity of 93% and a specificity of 92.6%. Conclusion: The detection algorithm is accurate and robust in pulmonary OEM frame sequences. Conditional to appropriate model refinement, the algorithms can become applicable in other organs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deconvolution and Restoration of Optical Endomicroscopy Images

Optical endomicroscopy (OEM) is an emerging technology platform with preclinical and clinical imaging utility. Pulmonary OEM via multicore fibres has the potential to provide in vivo in situ molecular signatures of disease such as infection and inflammation. However, enhancing the quality of data acquired by this technique for better visualization and subsequent analysis remains a challenging p...

متن کامل

Characterization and modelling of inter-core coupling in coherent fiber bundles.

Recent developments in optical endomicroscopy (OEM) and associated fluorescent SmartProbes present a need for sensitive imaging with high detection performance. Inter-core coupling within coherent fiber bundles is a well recognized limitation, affecting the technology's imaging capabilities. Fiber cross coupling has been studied both experimentally and within a theoretical framework (coupled mo...

متن کامل

Automated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy

Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...

متن کامل

Assessing the utility of autofluorescence-based pulmonary optical endomicroscopy to predict the malignant potential of solitary pulmonary nodules in humans

Solitary pulmonary nodules are common, often incidental findings on chest CT scans. The investigation of pulmonary nodules is time-consuming and often leads to protracted follow-up with ongoing radiological surveillance, however, clinical calculators that assess the risk of the nodule being malignant exist to help in the stratification of patients. Furthermore recent advances in interventional ...

متن کامل

Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope

Confocal endomicroscopy is an emerging imaging technology that has recently been introduced into the clinic to instantaneously collect "optical biopsies" in vivo with histology-like quality. Here, we demonstrate a fast scanner located in the distal end of a side-viewing instrument using a compact lens assembly with numerical aperture of 0.5 to achieve a working distance of 100 μm and field-of-v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017